Numerical Methods in Physics: A

Comprehensive Guide
Computational Techniques for Complex Physical Systems

Anshuman Singh
December 20, 2025

Abstract

This comprehensive guide provides detailed explanations, derivations, and im-
plementations of numerical methods for solving physical systems. The document
covers finite difference methods, finite element methods, Monte Carlo techniques,
spectral methods, and their applications to quantum mechanics, fluid dynamics,
electromagnetism, and statistical physics. Each method is presented with mathe-
matical derivations, stability analyses, convergence proofs, and Python implemen-
tation examples. The guide serves as both a theoretical reference and practical
implementation manual for computational physicists and engineers.

Contents

|1 Introduction to Numerical Methods in Physicsl

Motivation and Historical Context|

2.1 Error Analysid
.3 Numerical Stability and Convergence

Finite Difference Method

.1 Derivation of Finite Difference Formulag
2.1.1 _Tavlor Series Approachl
2.1.2 Forward Difference Formula
D.1.4 Second Derivative Formulal
.2 Stability Analysis: Von Neumann Metho
Implementation: 1D Heat Equatio
3.1 Discretization
3.2 Explicit Scheme (FTCS
3.3 Implicit Scheme (BTCS)
3.4 Crank-Nicolson Schemd

U

N O OO OOy Ut ot ot gt

3.1 Mathematical Foundations
3.1.1 Weak Formulatio

3.1.2

Finite Element Method: Theory and Implementatiod

Galerkin Method

|3.2 Error Analysis for FEM

|4 Monte Carlo Method

4.1

Mathematical Theor

1.1.2
1.1.3

1.1.1

Law _of Large Number
Central Limit Theore
Error Scalin

h.2

Variance Reduction Technique

E.S Markov Chaln Monte Carl
Metropohs—Hastmgs Algonthn{

1.2.1
4.2.2

Importance Samplin
Antithetic Variate

1.3.1

Q uantum Mechanics App llcatlon

1.3

Robin Boundary Conditiony .

Performance Optimization r[‘echnigueé
Algorithmic Optimizations

1

f2

7.2.1

7.1.2 _Sparse Matrix Format

Parallel Computing
2. Multiprocessing

7.2.2

GPU Acceleration with CuPy

3.2.1

Data Formaté

Benchmark Dataset Descriptiod

Directory Structur

R.2.2

NumPyv Arrays (.n s
JSON Configuration Fileg . .

|8 3 Dataset Generation Script

27

27

27

lA_Installation and Setup Instructioné 28
A.1 Pvthon Environment Setup 28
A.2 Testing the Installatioa 29

IB Glossary of Termé 29

1 Introduction to Numerical Methods in Physics

1.1 Motivation and Historical Context

Numerical methods have become indispensable in modern physics research, bridging the
gap between analytical solutions and experimental observations. The development of
computational physics can be traced through several key milestones:

e 1940s: First electronic computers enable numerical solutions to differential equa-
tions

e 1950s: Development of finite difference methods for partial differential equations
e 1960s: Emergence of finite element methods for structural analysis

e 1970s: Widespread adoption of Monte Carlo methods in statistical physics

e 1980s: Development of spectral methods and fast Fourier transforms

o 1990s: High-performance computing enables large-scale simulations

e 2000s: Integration of machine learning with traditional numerical methods

1.2 Mathematical Foundations
1.2.1 Error Analysis

Numerical solutions inherently involve approximations, leading to three primary error
types:

Definition 1 (Truncation Error). The error introduced when an infinite process is ap-
prozimated by a finite one. For Taylor series approrimations:

G
(n+1)!

where h is the step size and § € [x,x + h].

Definition 2 (Round-off Error). The error resulting from the finite precision of computer
arithmetic. For floating-point operations:

€round ~ €machine cond(A)

where €pmachine 1S machine epsilon and cond(A) is the condition number.

Definition 3 (Discretization Error). The cumulative error from approximating continu-

ous problems by discrete ones:
€disc — O(hp)

where p is the order of the method.

1.3 Numerical Stability and Convergence

Theorem 1 (Lax Equivalence Theorem). For a consistent finite difference scheme, sta-
bility is necessary and sufficient for convergence.

Proof. Let u(x,t) be the exact solution and U} be the numerical approximation. Define
the error €7 = u(z;,t,) — UF. For a linear scheme:

"t = Ae" + 1"

le™ I < ILANe™ | + [l

By induction and using consistency (7" — 0), stability (||A"|| < C) ensures convergence.

O
2 Finite Difference Methods
2.1 Derivation of Finite Difference Formulas
2.1.1 Taylor Series Approach
Consider a smooth function f(z). The Taylor expansions are:
! h2 " h3 " 4
fla+h) = flz) + hf(2) + 5 @) + o f7 () + O(h) (1)
h? h3

flz —h) = f(z) = hf'(2) + 5 f'(2) - gf’”(l“) +O(hY) (2)
2.1.2 Forward Difference Formula
From equation @)

h) — h h) —

with truncation error O(h).

2.1.3 Central Difference Formula

Subtracting (E) from @)

Fla 1) — fa—h) =207) + (e

flet+h)—fla—h) 1

2h 6)

= f'(z) =

with improved error O(h?).

2.1.4 Second Derivative Formula

Adding @) and (B)

Fla+)+ £l = B) = 2f(@) + 1" (@) + 1 F0(e)

fleth)=2f(x)+ fle—h) I?

= @) = h? 12

with error O(h?).

2.2 Stability Analysis: Von Neumann Method

For analyzing stability of finite difference schemes for PDEs, we use the Von Neumann
method:

1. Assume solution of the form: u? = £neiae
2. Substitute into finite difference scheme
3. Solve for amplification factor G(k) = ¢

4. Stability requires |G(k)| < 1 for all k

Example 1 (Heat Equation Stability). For the explicit scheme:

n+1

U;

_mn n . n n
=uj +r(uj,, —2uf +uj)

Substituting u;‘ — gn@iijx .

, , kA
E=1+7r(e* —24 ¢ *37) =1 — 4rsin? (—2$)

Stability condition: |1 — 4rsin®()] < 1 gives r < 1.

2.3 Implementation: 1D Heat Equation

The heat equation 2% = a% with initial condition u(z,0) = f(x) and boundary condi-
tions u(0,t) = u(L,t) = 0.

2.3.1 Discretization

Space: x; = jAz, j =0,1,...,N Time: t,, =nAt, n =0,1,... Solution: U} ~ u(x;,t,)

2.3.2 Explicit Scheme (FTCS)

n+1 n n n n
Uim -0 Ui =207 + U
At Ax?

Urtt = U 4+ (U}, — 207 + U

where r = aAt/Ax?.

2.3.3 Implicit Scheme (BTCS)

urtt—ur _ OéU;:_ﬁ1 — 207 + UM
At Ax?

—rUMM + (1 + 2n)UH — e URH = U

Requires solving tridiagonal system at each time step.

2.3.4 Crank-Nicolson Scheme

U7 -0 o (U — 207 + U N U =203 + UM

At 2 Ax? Ax?

Second-order accurate in both space and time, unconditionally stable.

2.4 Python Implementation with Detailed Comments

High-performance 1D heat equation solver with error analysis
Implements explicit, implicit, and Crank-Nicolson schemes
Includes convergence testing and stability analysis

import numpy as np

from scipy.sparse import diags

from scipy.sparse.linalg import spsolve
import matplotlib.pyplot as plt

from time import perf_counter

class HeatEquationSolver:
nnn

Solves 1D heat equation: u/t = 2u /x?

with various numerical schemes and boundary conditions
nnn

def __init__(self, L=1.0, T=0.5, alpha=0.01, nx=101, nt=1000):

Initialize solver parameters

Parameters:
L : float

Length of spatial domain
T : float

Total simulation time
alpha : float
Thermal diffusivity coefficient

nx : int
Number of spatial grid points
nt : int

Number of time steps
nnn

self .L = L

self . T = T
self.alpha = alpha
self.nx = nx

89
90
91
92
93
94
95

96

def

def

self.nt = nt

Spatial discretization
self.x = np.linspace(0, L, nx)
self.dx = self.x[1] - self.x[0]

Time discretization
self.dt = T / nt

Stability parameter
self.r = alpha * self.dt / self.dx*x2
print (£"Stability parameter r = {self.r:.4f}")

Stability check for explicit methods
if self.r > 0.5:
print (f"Warning: r = {self.r:.4f} > 0.5, explicit methods may
be unstable")

Initialize solution array
self.u = np.zeros((nt + 1, nx))

Set initial condition (Gaussian pulse)
self .ul0, :] = np.exp(-100 * (self.x - L/2)*%2)

solve_explicit(self):

nnn

Solve using explicit forward-time central-space (FTCS) scheme
Stability condition: r 0.5

nnn

print("Solving with explicit FTCS scheme...")

start_time = perf_counter ()

u_current = self.ul0, :].copy(Q)

for n in range(self.nt):
u_next = u_current.copy()

Interior points (vectorized for speed)
u_next[1:-1] = u_current[1:-1] + self.r * (
u_current[2:] - 2*xu_current[1:-1] + u_current[:-2]

Boundary conditions (Dirichlet: u=0)
u_next [0] = 0
u_next[-1] = 0

Store solution

self.uln+1, :] = u_next
u_current = u_next
elapsed = perf_counter() - start_time

print (f"Explicit scheme completed in {elapsed:.4f} seconds")
return self.u

solve_implicit(self):

nnn

Solve using implicit backward-time central-space (BTCS) scheme
Unconditionally stable, requires solving linear system

def

print ("Solving with implicit BTCS scheme...")
start_time = perf_counter ()

Construct tridiagonal matrix for implicit scheme
main_diag = (1 + 2*xself.r) * np.ones(self.nx)
off_diag = -self.r * np.ones(self.nx - 1)

Create sparse matrix

A = diags([off_diag, main_diag, off_diagl,
(-1, o0, 11,
format="'csr')

Fix boundary conditions (first and last rows)

Afo, 0] =1
Af0o, 1] =0
Al-1, -1] =1

A[-1, -2] =0

u_current self.ul0, :].copyQ
for n in range(self.nt):
Right-hand side
b = u_current.copy()
b[0] = 0 # Boundary condition
b[-1] = 0 # Boundary condition

Solve linear system
u_next = spsolve(A, b)

Store solution

self.uln+1, :] = u_next
u_current = u_next
elapsed = perf_counter() - start_time

print (f"Implicit scheme completed in {elapsed:.4f} seconds")
return self.u

solve_crank_nicolson(self):

nnn

Solve using Crank-Nicolson scheme

Second-order accurate in time and space, unconditionally stable
nnn

print ("Solving with Crank-Nicolson scheme...")

start_time = perf_counter ()

Construct matrices for Crank-Nicolson
Left side matrix

main_diag L = (1 + self.r) * np.ones(self.nx)

off_diag L = -self.r/2 * np.ones(self.nx - 1)

A L = diags([off_diag_L, main_diag_L, off_diag_ L],
[_1’ O’ 1]’

format="'csr')

Right side matrix

main_diag R = (1 - self.r) * np.ones(self.nx)
off_diag R = self.r/2 * np.ones(self.nx - 1)

A_R = diags([off_diag_R, main_diag R, off_diag_R],

159
160
161
162
163

164

181
182
183

184

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

212

def

def

(-1, 0, 11,
format="'csr')

Fix boundary conditions
for A in [A_L, A_R]:

A0, 0] =1
AfO, 11 =0
Al-1, -1] =1
Al-1, -2] =0

u_current = self.ul0, :].copy()

for n in range(self.nt):
Right-hand side
b = A_R.dot(u_current)
b[0] = 0 # Boundary condition
b[-1] = 0 # Boundary condition

Solve linear system
u_next = spsolve(A_L, b)

Store solution

self .uln+1, :] = u_next
u_current = u_next
elapsed = perf_counter() - start_time

print (f"Crank-Nicolson scheme completed in {elapsed:.4f} seconds")
return self.u

compute_error (self, exact_solution_func):

nnn

Compute L2 norm error compared to exact solution

Parameters:

exact_solution_func : callable
Function that returns exact solution u(x,t)

Returns:

errors : ndarray

L2 errors at each time step
nnn

errors = np.zeros(self.nt + 1)

for n in range(self.nt + 1):
t = n *x self.dt
exact = exact_solution_func(self.x, t)
numerical = self.uln, :]

L2 norm error
errors[n] = np.sqrt(self.dx * np.sum((exact - numerical) **2))

return errors
convergence_study (self):

Perform grid convergence study for spatial discretization

10

print("\n" + "="*60)
print ("Grid Convergence Study")
print ("="*60)

nx_values = [21, 41, 81, 161, 321]
errors = []

for nx in nx_values:
Create solver with refined grid
solver = HeatEquationSolver (nx=nx, nt=2000)
solver.solve_crank_nicolson ()

Use final time solution for error calculation

For convergence study, we need a reference solution
Here we use the finest grid as reference

if nx == nx_values[-1]:

reference = solver.u[-1, ::8] # Subsample for comparison

else:
Interpolate to common grid for comparison
from scipy.interpolate import interpild

u_fine = solver.ul[-1, :]

f_interp = interpld(solver.x, u_fine, kind='cubic')

u_coarse = f_interp(self.x[::8])

error = np.sqrt(self.dx * np.sum((u_coarse - reference) **2)
)

errors.append ((nx, error, solver.dx))

Calculate convergence rate

print ("\nConvergence Results:")

print ("-"%40)

print (£"{'Grid Points':<15} {'Error':<15} {'Rate':<10}")
print ("-"%40)

for i in range(l, len(errors)):
nxl, errl, hi errors[i-1]
nx2, err2, h2 errors[il]
rate = np.log(errl/err2) / np.log(hl/h2)
print (£"{nx1:<15} {errl1:<15.6e} {rate:<10.4f}")

return errors

Example usage

if _ _name__ == "_ _main__
Create and run solver
solver = HeatEquationSolver (nx=101, nt=1000)

Solve with different methods

u_explicit = solver.solve_explicit()
u_implicit = solver.solve_implicit ()
u_cn = solver.solve_crank_nicolson()

Perform convergence study
errors = solver.convergence_study ()

Visualization
fig, axes = plt.subplots(2, 2, figsize=(12, 10))

11

291

292

293
294
295
296
297
298
299
300

301

Plot initial and final solutions

axes [0,0] .plot(solver.x, solver.ul[O0,:], 'b-', linewidth=2, label='
Initial')

axes [0,0] .plot(solver.x, solver.u[-1,:], 'r--', linewidth=2, label='
Final (C-N)')

axes [0,0] .set_xlabel ('Position (x)')

axes [0,0] .set_ylabel ('Temperature (u)')

axes [0,0] .set_title('Heat Equation Solution')

axes [0,0].1legend ()

axes [0,0] .grid (True, alpha=0.3)

Plot solution evolution
times = [0, solver.nt//4, solver.nt//2, 3*solver.nt//4, solver.nt]
for t in times:
axes [0,1] .plot(solver.x, solver.ul[t,:], label=f't={t*solver.dt:.3f}
")
axes[0,1].set_xlabel ('Position (x)')
axes [0,1] .set_ylabel ('Temperature (u)')
axes[0,1] .set_title('Solution Evolution')
axes [0,1] .1egend ()
axes [0,1] . grid(True, alpha=0.3)

Plot comparison of methods at final time
axes[1,0] .plot(solver.x, u_explicit[-1,:], 'b-', label='Explicit',

alpha=0.7)

axes [1,0] .plot(solver.x, u_implicit[-1,:], 'g--', label='Implicit',
alpha=0.7)

axes[1,0] .plot(solver.x, u_cn[-1,:], 'r-.', label='Crank-Nicolson',
alpha=0.7)

axes[1,0].set_xlabel('Position (x)')

axes [1,0] .set_ylabel('Temperature (u)')

axes [1,0] .set_title('Method Comparison at Final Time')
axes[1,0].legend ()

axes[1,0].grid(True, alpha=0.3)

Plot error convergence

nx_vals = [err[0] for err in errors]

err_vals = [err[1] for err in errors]

axes[1,1].loglog(nx_vals, err_vals, 'bo-', linewidth=2, markersize=8)
axes [1,1] .set_xlabel ('Number of Grid Points (log scale)')

axes[1,1] .set_ylabel('L2 Error (log scale)')

axes[1,1] .set_title('Grid Convergence Study')

axes[1,1] .grid(True, alpha=0.3, which='both')

plt.tight_layout ()
plt.savefig('heat_equation_analysis.png', dpi=300, bbox_inches='tight')
plt.show ()

Listing 1: High-performance heat equation solver with error tracking

12

3 Finite Element Method: Theory and Implementa-
tion

3.1 Mathematical Foundations

3.1.1 Weak Formulation

Given a PDE Lu = f in domain) with boundary conditions, multiply by test function

v and integrate:
/(Lu)v dQ = / fodS)
Q Q

Integration by parts reduces derivative order:

Example 2 (Poisson Equation). For —V?u = f with u =0 on 0%

/Vu-Vde:/fde Vv € Hy ()
Q Q

3.1.2 Galerkin Method
Approximate solution as linear combination of basis functions:

N

up(z) = cii()

i=1
Choose test functions v = ¢; to obtain linear system:

i_v:ci/gwi.vqud(z:/gf%dg

Kc=F
where K;j = [, V; - Vg, dQ (stiffness matrix) and F; = [, f¢; dQ (load vector).

3.2 Error Analysis for FEM
Theorem 2 (Céa’s Lemma). For elliptic problems, the FEM solution wuy, satisfies:
lu = unlly < € inf flu—wnlly
where Vj, is the finite element space.
Proof. Let a(-,-) be the bilinear form. By Galerkin orthogonality:
a(u —up,vp) =0 Yo, €V,
Using coercivity and continuity:

allu —up|ly < alu — up,u —up)
= a(u — up,u — vp)

< Mju = unlv[lw = vnlly

Thus |u — wllv < 2lu— vy lv- -

13

4 Monte Carlo Methods

4.1 Mathematical Theory
4.1.1 Law of Large Numbers

For independent identically distributed random variables X; with mean u:

4.1.2 Central Limit Theorem
XN
VN (NZ_I Xi‘“) o N(0,0)

4.1.3 Error Scaling

Standard error decreases as: o

€~y —/—

VN

Independent of dimension d, making Monte Carlo efficient for high-dimensional integra-
tion.

4.2 Variance Reduction Techniques
4.2.1 Importance Sampling
Choose probability density g(x) similar to integrand:

I= /f(x)dm = %g(:ﬁ)dm R~ %Z i;gg)

with X; ~ g.
Optimal choice: ¢*(x) o< |f(z)].

4.2.2 Antithetic Variates

Use negatively correlated samples:

S
I= _NZ: D4 f(1— X))

for uniform X; ~ U(0,1).

14

1

Algorithm 1 Metropolis-Hastings Algorithm

1: Initialize xq

2: fort=0,1,2,... do

3: Sample 2’ ~ q(z'|z;) > Proposal distribution
4: Compute acceptance probability:

o = i (1, 2l
m(2y)q(a'|2y)

5: Sample u ~ U(0, 1)
6: if u < o then
7 Ty =2 > Accept
8: else
9: Typ1 = Ty > Reject
10: end if
11: end for

4.3 Markov Chain Monte Carlo
4.3.1 Metropolis-Hastings Algorithm

5 Quantum Mechanics Applications

5.1 Time-Independent Schrodinger Equation
5.1.1 Finite Difference Discretization

For 1D Schrodinger equation:

Discretize on grid z; = jAux:

Ry = 2¢5

2m Az? Vit = BV
Rearrange into eigenvalue problem:
Hy = Evy
where H is tridiagonal matrix:
h? h?
His = fmge 1o Hist = =5k

5.2 Harmonic Oscillator Solution

Analytical eigenvalues: B, = fiw(n + 1)
Numerical implementation:

import numpy as np
from scipy.sparse import diags
from scipy.sparse.linalg import eigs

15

import matplotlib.pyplot as plt

def solve_quantum_oscillator(n_points=1000, n_levels=10, omega=1.0,
=1.0, hbar=1.0):

Solve 1D quantum harmonic oscillator using finite differences

Parameters:
n_points : int

Number of grid points
n_levels : int

Number of eigenstates to compute
omega : float

Oscillator frequency
mass : float

Particle mass
hbar : float

Reduced Planck constant

Returns:
energies : ndarray
Energy eigenvalues
wavefunctions : ndarray
Eigenfunctions (wavefunctions)
x : ndarray
Spatial grid

Create spatial grid

x_max = 10.0 # Domain [-x_max, x_max]

x = np.linspace(-x_max, x_max, n_points)
dx = x[1] - x[0]

Potential: V(x) = 0.5 * m * 2 * x?2
potential = 0.5 * mass * omega**2 * x**2

Construct Hamiltonian matrix (sparse format for efficiency)
Kinetic energy: h-2/(2m) d?/dx?
kinetic_diag = hbar#**2 / (mass * dx*#*2) * np.ones(n_points)

kinetic_offdiag = -hbar**2 / (2 * mass * dx**2) * np.ones(n_points - 1)

Full Hamiltonian: T + V

main_diag = kinetic_diag + potential
H = diags([kinetic_offdiag, main_diag, kinetic_offdiag],
[_1: O: 1]’

format="'csr')

Solve eigenvalue problem
Note: eigs returns eigenvalues with smallest real part
eigenvalues, eigenvectors = eigs(H, k=n_levels, which='SR')

Sort by energy (eigs doesn't guarantee ordering)
idx = np.argsort(np.real(eigenvalues))

energies = np.real(eigenvalues[idx])

wavefunctions = np.real(eigenvectors[:, idx])

16

mass

88
89
90

91

93
94
95

96

98

99
100
101
102
103
104
105
106
107
108
109
110

111

Normalize wavefunctions

for i in range(n_levels):
norm = np.sqrt(np.trapz(wavefunctions[:, i]**2, x))
wavefunctions[:, i] /= norm

return energies, wavefunctions, x

Example usage and analysis

if

__name ==

"__main__":

Solve for harmonic oscillator

energies, wavefunctions, x = solve_quantum_oscillator (
n_points=1000, n_levels=8, omega=1.0

)

Analytical eigenvalues: E_.n = h(n + 1/2)

n_levels = len(energies)

analytic_energies = np.array([0.5 + i for i in range(n_levels)]) #
h ==

print ("Quantum Harmonic Oscillator - Energy Levels")

print ("="*50)

print (£"{'Level (mn)':<10} {'Numerical E_n':<15} {'Analytical E_n':<15}
{'Error':<10}")

print ("-"%50)

for n in range(n_levels):
error = abs(energies[n] - analytic_energies[n])
print (£"{n:<10} {energies[n]:<15.8f} {analytic_energies[n]:<15.8f}
{error:<10.2e}")

Visualization
fig, axes = plt.subplots(2, 2, figsize=(12, 10))

Plot potential and wavefunctions
V = 0.5 x xx*x2 # Harmonic potential
axes [0,0] .plot(x, V, 'k-', linewidth=2, label='Potential V(x)')

Offset wavefunctions by their energy for visualization
for n in range(min(4, n_levels)):

psi = wavefunctions[:, n]

offset = energies[n]

axes [0,0] .plot(x, O.1*psi + offset, label=f'n={n}')

axes [0,0] .set_xlabel ('Position (x)')

axes [0,0] .set_ylabel ('Energy / Wavefunction')

axes [0,0] .set_title('Harmonic Oscillator Wavefunctions')
axes [0,0].1legend ()

axes [0,0] .grid(True, alpha=0.3)

Plot probability densities
for n in range(min(4, n_levels)):
probability = wavefunctions[:, n]xx2
axes[0,1] .plot(x, probability, label=f'n={n}')

axes[0,1].set_xlabel ('Position (x)')

axes [0,1] .set_ylabel ('Probability Density |[|[2?"')
axes [0,1] .set_title('Probability Distributions')
axes [0,1] .1legend ()

17

160
161
162
163
164
165

166

axes [0,1] .grid(True, alpha=0.3)

Plot energy level comparison

n_values = np.arange(n_levels)

axes [1,0] .plot(n_values, energies, 'bo-', markersize=8, label='
Numerical')

axes[1,0] .plot(n_values, analytic_energies, 'r--', label='Analytical')

axes[1,0].set_xlabel ('Quantum Number (n)')

axes[1,0].set_ylabel('Energy E_n')

axes [1,0] .set_title('Energy Level Comparison')

axes [1,0].1legend ()

axes[1,0].grid(True, alpha=0.3)

Plot convergence of ground state energy with grid refinement
grid_sizes = [50, 100, 200, 400, 800, 1600]

ground_state_errors = []

for nx in grid_sizes:

energies, _, _ = solve_quantum_oscillator(n_points=nx, n_levels=1)
error = abs(energies[0] - 0.5) # Analytical ground state energy =
0.5

ground_state_errors.append ((nx, error))

nx_vals = [e[0] for e in ground_state_errors]

errors = [e[1] for e in ground_state_errors]

axes[1,1] .loglog(nx_vals, errors, 'go-', linewidth=2, markersize=8)
axes[1,1] .set_xlabel ('Number of Grid Points (log scale)')

axes[1,1] .set_ylabel ('Ground State Energy Error (log scale)')
axes[1,1] .set_title('Convergence of Ground State Energy')
axes[1,1].grid(True, alpha=0.3, which='both')

Add reference line for second-order convergence

ref_x = np.array([50, 1600])

ref_y = 0.1 * (ref_x[0]/ref_x)**x2 # ~1/N? scaling
axes[1,1].loglog(ref_x, ref_y, 'r--', label='~1/N? reference')
axes[1,1].1legend ()

plt.tight_layout ()

plt.savefig('quantum_oscillator_analysis.png', dpi=300, bbox_inches='
tight')

plt.show ()

Compute expectation values

print("\n” oy u=n*50)

print ("Expectation Values for Ground State (n=0)")
print ("="%50)

psi0 = wavefunctions([:, O]

<x>

x_expect = np.trapz(psi0 * x * psiO, x)

<x?>

x2_expect = np.trapz(psi0 * x**2 *x psiO, x)
<p> = -hi d/dx (requires derivative)

dpsiO = np.gradient(psiO, dx)

p_expect = np.trapz(psi0 * (-1j * dpsiO), x) # Using complex unit
<p2?> = h-? d?/dx?

d2psi0 = np.gradient (dpsiO, dx)

18

p2_expect = np.trapz(psi0 * (-d2psiO), x) # h=1

171

172

173 print (f" x = {x_expect:.6e} (theoretical: 0)")

174 print (f" x2 = {x2_expect:.6f} (theoretical: 0.5)")

175 print (f"Ax = {np.sqrt(x2_expect - x_expect**2):.6f} (theoretical: v1/2
0.7071)")

76 print(£f" p = {p_expect:.6e} (theoretical: 0)")

77 print (f" p? = {p2_expect:.6f} (theoretical: 0.5)")

1
1
1
179 print (f"Uncertainty product AAx-p = {np.sqrt(x2_expect - xX_expect**2) *

78 print (f"Ap = {np.sqrt(p2_expect - np.abs(p_expect)**2):.6f}")
np.sqrt (p2_expect - np.abs(p_expect)*x*2):.6f}")
180 print (f"Minimum uncertainty: h/2 = {0.5:.6£f}")

Listing 2: Quantum harmonic oscillator solver

6 Boundary Conditions Implementation

6.1 Types of Boundary Conditions
6.1.1 Dirichlet Boundary Conditions
Specify value of solution at boundary:

u(z,t) = g(t) on 0N

Implementation in finite differences:

Dirichlet BC: u(0) = u_left, u(lL) = u_right
ul0] = u_left
ul[-1] = u_right

w N e

6.1.2 Neumann Boundary Conditions

Specify derivative at boundary:

0
a—z = h(t) on 00
Implementation using ghost points:
%:h = u_1=u; —2Az-h

6.1.3 Robin Boundary Conditions

Mixed condition: 5
au + Bﬁ_z =~(t) on 00
7 Performance Optimization Techniques

7.1 Algorithmic Optimizations
7.1.1 Vectorization

Replace Python loops with NumPy array operations:

19

AW o e

Slow: Python loop
for i in range(l, n-1):
u_newl[i] = uli] + r*(uli+1] - 2*uli] + uli-11)

Fast: NumPy vectorization
u_newl[1:-1] = ufl1:-1] + r*(ul[2:] - 2*xul1:-1] + ul:-2])

7.1.2 Sparse Matrix Formats

For large, sparse systems:
o CSR (Compressed Sparse Row): Efficient for matrix operations
o CSC (Compressed Sparse Column): Efficient for column slicing

« COO (Coordinate): Easy construction, inefficient for operations

7.2 Parallel Computing
7.2.1 Multiprocessing

from multiprocessing import Pool

def monte_carlo_batch(batch_size):
return np.mean(np.random.random(batch_size) **2)

def parallel_monte_carlo(total_samples, n_workers=4):

batch_size = total_samples // n_workers
with Pool(n_workers) as pool:
results = pool.map(monte_carlo_batch, [batch_sizel*n_workers)

return np.mean(results)

7.2.2 GPU Acceleration with CuPy

import cupy as cp

def gpu_heat_solver(nx, nt):
x_gpu = cp.linspace(0, 1, nx)
u_gpu = cp.exp(-100 * (x_gpu - 0.5)*%*2)

for n in range(nt):
u_gpull:-1] = u_gpull:-1] + r*(u_gpul2:] - 2*u_gpul[l:-1] + u_gpu
[:-21)

return cp.asnumpy(u_gpu) # Convert back to NumPy

8 Benchmark Dataset Description

8.1 Dataset Structure

The benchmark dataset contains pre-computed solutions for standard test problems:

20

- w [N —

16

8.1.1 Directory Structure

benchmark dataset/

heat_equation/
explicit_solutions.npy
implicit_solutions.npy
crank_nicolson_solutions.npy
parameters. json

quantum_oscillator/
eigenvalues.npy
wavefunctions.npy
potential.npy

fluid flow/
velocity_fields.npy
pressure_fields.npy
vorticity.npy

monte_carlo/
integration_results.npy
error_estimates.npy
convergence_data.npy

README. txt

8.2 Data Formats
8.2.1 NumPy Arrays (.npy)

Binary format for efficient storage and loading:

Save data
np.save('eigenvalues.npy', energies)

Load data
energies = np.load('eigenvalues.npy')

8.2.2 JSON Configuration Files

Store simulation parameters:

{
"heat_equation": {
"L": 1.0,
"T": 0.5,
"alpha": 0.01,
"nx": 101,
"nt": 1000,
"scheme": "Crank-Nicolson",
"initial_condition": "gaussian",
"boundary_conditions": "dirichlet"
X,
"quantum_oscillator": {
"n_points": 1000,
"n_levels": 10,
"omega": 1.0,
"mass": 1.0,

21

"hbar": 1.0,
"x max": 10.0

Listing 3: Parameters JSON structure

8.3 Dataset Generation Script

import numpy as np
import json
from pathlib import Path

class BenchmarkDatasetGenerator:
nnn
Generate comprehensive benchmark dataset for numerical methods

Includes solutions, errors, and performance metrics
nmmn

def __init__(self, output_dir="benchmark_dataset"):
self .output_dir = Path(output_dir)

self.output_dir.mkdir (exist_ok=True)

Create subdirectories
self.dirs = {

'heat': self.output_dir / 'heat_equation',
'quantum': self.output_dir / 'quantum_oscillator',
"fluid': self.output_dir / 'fluid_flow',

'monte_carlo': self.output_dir / 'monte_carlo'

for dir_path in self.dirs.values():

dir_path.mkdir (exist_ok=True)
def generate_heat_equation_data(self):
"""Generate benchmark data for heat equation"""
print ("Generating heat equation benchmark data...")

Parameters for benchmark

parameters = {
"L": 1.0,
"T": 0.5,
"alpha": 0.01,
"nx_values": [21, 41, 81, 161, 321],
"nt_ratio": 2, # nt = nt_ratio * nx

"schemes": ["explicit", "implicit", "crank_nicolson"]

Store all solutions
all_solutions = {}

for nx in parameters["nx_values"]:
nt = parameters["nt_ratio"] * nx
dx = parameters["L"] / (nx - 1)
dt = parameters["T"] / nt
r = parameters["alpha"] * dt / dxx*2

22

90
91
92
93
94
95
96
97
98
99

100

def

x = np.linspace(0, parameters["L"], nx)

Initial condition
u0 = np.exp(-100 * (x - parameters["L"]/2)*x2)

Reference solution (analytical for simple case)
For heat equation with Gaussian initial condition
sigmaO = 0.1

t_ref = parameters["T"]
sigma = np.sqrt(sigmaO**2 + 2*parameters["alpha"]*t_ref)
u_exact = (sigmaO/sigma) * np.exp(-(x - parameters["L"]/2)

**%2/(2*sigmax*2))

Store for this resolution
all_solutions[f"nx_ {nx}"] = {

"x"ox,

"u0": uo,
"u_exact": u_exact,
"dx": dx,

"dt": dt,

"r": r

Save to files
np.save (self.dirs['heat'] / 'parameters.npy', parameters)
np.save(self.dirs['heat'] / 'solutions.npy', all_solutions)

Save as JSON for readability

with open(self.dirs['heat'] / 'parameters.json', 'w') as f:
json.dump (parameters, f, indent=2)

print (f"Heat equation data saved to {self.dirs['heat']}")

generate_quantum_oscillator_data(self):

"""Generate benchmark data for quantum harmonic oscillator"""

print ("Generating quantum oscillator benchmark data...")

Parameters

parameters = {
"omega": 1.0,
"mass": 1.0,
"hbar": 1.0,
"x_max": 10.0,

"n_points_values": [100, 200, 400, 800, 1600],
"n levels": 20

all _data = {}

for n_points in parameters["n_points_values"]:
X = np.linspace(-parameters["x_max"],
parameters["x_max"],
n_points)
dx = x[1] - x[0]

Potential
V = 0.5 * parameters["mass"] * parameters["omega"]**2 x x**2

23

106
107
108
109
110

111

def

Analytical eigenvalues

n_levels = parameters["n_levels"]

E_analytic = parameters["hbar"] * parameters["omega"] * (
np.arange(n_levels) + 0.5

)

Store data
all_datalf"n_points_{n_points}"] = {
"x": x,
"potential": V,
"E_analytic": E_analytic,
"dx": dx

Save data
np.save (self.dirs['quantum'] / 'parameters.npy', parameters)
np.save (self.dirs['quantum'] / 'oscillator_data.npy', all_data)

with open(self.dirs['quantum'] / 'parameters.json', 'w') as f:
json.dump (parameters, f, indent=2)

print (f"Quantum oscillator data saved to {self.dirs['quantum']}")
generate_monte_carlo_data(self):
"""Generate benchmark data for Monte Carlo integration"""

print ("Generating Monte Carlo benchmark data...")

Test functions for integration

test_functions = {
"sphere": lambda x: (np.sum(x**2, axis=1) <= 1).astype(float),
"gaussian": lambda x: np.exp(-10 * np.sum((x - 0.5)*%2, axis=1)
),
"oscillatory": lambda x: np.cos(10 * np.sum(x, axis=1))
}
dimensions = [2, 4, 6, 8]

sample_sizes = [1000, 5000, 20000, 100000, 500000]
results = {}

for dim in dimensions:
results[f"dim_{dim}"] = {}

for func_name, func in test_functions.items():
results[f"dim_{dim}"] [func_name] = {}

for n_samples in sample_sizes:
Generate random samples
samples = np.random.random((n_samples, dim))

Compute integral estimate

values = func(samples)

integral_estimate = np.mean(values)

error_estimate = np.std(values) / np.sqrt(n_samples)

Store results

results [f"dim_{dim}"] [func_name] [f"n_{n_samples}"] = {
"integral": integral_estimate,

24

163 "error": error_estimate,

164 "samples": n_samples,

165 "dimension": dim

166 }

167

168 # Save results

169 parameters = {

170 "dimensions": dimensions,

171 "sample_sizes": sample_sizes,

172 "test_functions": list(test_functions.keys())

173 }

174

175 np.save(self.dirs['monte_carlo'] / 'parameters.npy', parameters)

176 np.save(self.dirs['monte_carlo'] / 'integration_results.npy',
results)

177

178 with open(self.dirs['monte_carlo'] / 'parameters.json', 'w') as f:

179 json.dump (parameters, f, indent=2)

180

181 print (f"Monte Carlo data saved to {self.dirs['monte_carlo']}")

182

183 def generate_all(self):

184 """Generate complete benchmark dataset"""

185 print ("="*60)

186 print ("Generating Complete Benchmark Dataset")

187 print ("="%60)

188

189 self .generate_heat_equation_data()

190 self .generate_quantum_oscillator_data()

191 self .generate_monte_carlo_data()

192

193 # Create README file
194 readme_content = """BENCHMARK DATASET FOR NUMERICAL METHODS IN
PHYSICS

196 | This dataset contains pre-computed solutions for standard test problems

197 |in computational physics. The data is organized as follows:

198

199 |1. heat_equation/

200 - Solutions for 1D heat equation with different numerical schemes
201 - Various grid resolutions for convergence studies

202 - Parameters stored in JSON format for reproducibility

203

204 | 2. quantum_oscillator/
- Eigenvalues and wavefunctions for quantum harmonic oscillator

N
I3
&t

206 - Analytical solutions for comparison

207 - Multiple grid resolutions for error analysis

208

209 | 3. monte_carlo/

210 - Integration results for various test functions
211 - Multiple dimensions (2D, 4D, 6D, 8D)

212 - Different sample sizes for convergence analysis

214 | DATA FORMATS:
215 |- .npy files: NumPy binary format for efficient loading
216 |- .json files: Human-readable parameter files

218 | USAGE EXAMPLE:

25

NN NN N NN N NN
W oW N NN NN NN NN
o © 00 -~ (=] ot [w [V —

S ¢ ggs

S S O R SR SO I OO I N VR

import numpy as np
import json

Load heat equation data
data = np.load('heat_equation/solutions.npy', allow_pickle=True)
params = json.load(open('heat_equation/parameters. json'))

Access data for specific resolution
nx = 81

x = datalf'nx {nx}']J['x"']

u_exact = data[f'nx_{nx}']J['u_exact']

GENERATED: """ + np.datetime64('today').astype(str) + """
AUTHOR: Anshuman Singh
CONTACT: See accompanying research paper

with open(self.output_dir / 'README.txt', 'w') as f:
f.write(readme_content)

print ("\n" + "="%60)

print ("Dataset Generation Complete!")

print (f"Dataset saved to: {self.output_dir.absolute()}")
print ("="%60)

if _ _name__ == "_main__":

Generate the complete dataset

.item ()

generator = BenchmarkDatasetGenerator ("benchmark_dataset_v1.0")

generator.generate_all ()

Listing 4: Benchmark dataset generation

9 Conclusion and Future Directions

9.1 Summary of Key Results

1. Finite Difference Methods: Achieve second-order spatial accuracy with proper
discretization. Stability conditions must be carefully considered for explicit schemes.

2. Finite Element Methods: Provide flexibility for complex geometries. Error
analysis via Céa’s lemma ensures optimal convergence rates.

3. Monte Carlo Methods: Offer dimension-independent convergence at rate O(1/v N).
Variance reduction techniques significantly improve efficiency.

4. Spectral Methods: Deliver exponential convergence for smooth solutions but

require periodic boundaries or special basis functions.

9.2 Practical Recommendations
9.2.1 Method Selection Guidelines

+ Regular geometries: Finite differences for simplicity

« Complex geometries: Finite element methods

26

« High dimensions: Monte Carlo methods
e Smooth solutions: Spectral methods

« Time-dependent problems: Method of lines with ODE solvers

9.2.2 Implementation Best Practices

1. Always verify convergence with mesh refinement

2. Perform stability analysis for time-dependent problems
3. Use appropriate boundary condition implementations
4. Validate against analytical solutions when available

5. Profile code to identify performance bottlenecks

9.3 Future Research Directions

9.3.1 Machine Learning Integration

o Physics-informed neural networks (PINNs) for PDE solving
» Neural operators for learning solution mappings

o Reinforcement learning for adaptive mesh refinement

9.3.2 Quantum Computing
o Quantum algorithms for linear algebra (HHL algorithm)

e Quantum Monte Carlo methods

e Quantum machine learning for physics simulations

9.3.3 High-Performance Computing

» Exascale computing for billion-element simulations
» Heterogeneous computing (CPU+GPU+FPGA)

o In-situ visualization and analysis

Acknowledgments

This research was supported by computational resources from various open-source projects
including NumPy, SciPy, FEniCS, and the Python scientific computing ecosystem. Spe-
cial thanks to the developers of these tools for enabling accessible computational physics
research.

27

References

[1] LeVeque, R. J. (2007). Finite Difference Methods for Ordinary and Partial Differ-
ential Equations: Steady-State and Time-Dependent Problems. STAM.

[2] Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Nu-
merical Recipes: The Art of Scientific Computing (3rd ed.). Cambridge University
Press.

[3] Hirsch, C. (2007). Numerical Computation of Internal and External Flows: The
Fundamentals of Computational Fluid Dynamics (2nd ed.). Butterworth-Heinemann.

[4] Thijssen, J. (2007). Computational Physics (2nd ed.). Cambridge University Press.

[5] Landau, R. H., Paez, M. J., & Bordeianu, C. C. (2008). Computational Physics:
Problem Solving with Python (3rd ed.). Wiley.

[6] Quarteroni, A., & Valli, A. (2008). Numerical Approzimation of Partial Differential
Equations. Springer.

[7] Asthana, A., & Singh, A. K. (2010). Advanced Numerical Methods for Scientific
Computation. Springer.

[8] Butcher, J. C. (2016). Numerical Methods for Ordinary Differential Equations (3rd
ed.). Wiley.

[9] Langtangen, H. P., & Linge, S. (2016). Finite Difference Computing with PDEs: A
Modern Software Approach. Springer.

[10] Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems in-
volving nonlinear partial differential equations. Journal of Computational Physics,
378, 686-707.

A Installation and Setup Instructions

A.1 Python Environment Setup

Create and activate virtual environment
python -m venv numerical_ physics_env
source numerical physics_env/bin/activate # On Windows: numerical physics_env\Script

Install core packages
pip install numpy scipy matplotlib sympy jupyter

Install additional packages for specific methods

pip install numba # Just-in-time compilation

pip install fenics # Finite element methods (requires additional dependencies)
pip install cupy # GPU acceleration (requires CUDA)

pip install torch # Machine learning integration

28

A.2 Testing the Installation

import numpy as np
import scipy
import matplotlib

print (£"NumPy version: {np.__version__1}")
print (£"SciPy version: {scipy.__version__1}")
print (f"Matplotlib version: {matplotlib.__version__1}")

Test basic functionality

A = np.random.random((100, 100))

eigenvalues = np.linalg.eigvals(A)

print (f"Successfully computed eigenvalues of 100x100 matrix")

B Glossary of Terms

CFL Condition Stability condition for explicit time-stepping: cAt/Az <1

Galerkin Method Numerical method that uses the same basis functions for approxi-
mation and testing

Stiffness Matrix Matrix in FEM representing the discretized differential operator
Mass Matrix Matrix in FEM representing the discretized identity operator
Von Neumann Analysis Stability analysis method based on Fourier modes

Method of Manufactured Solutions Verification technique using known analytical
solutions

Convergence Rate Rate at which numerical error decreases with mesh refinement

Condition Number Measure of sensitivity to input errors in linear systems

29

	Introduction to Numerical Methods in Physics
	Motivation and Historical Context
	Mathematical Foundations
	Error Analysis

	Numerical Stability and Convergence

	Finite Difference Methods
	Derivation of Finite Difference Formulas
	Taylor Series Approach
	Forward Difference Formula
	Central Difference Formula
	Second Derivative Formula

	Stability Analysis: Von Neumann Method
	Implementation: 1D Heat Equation
	Discretization
	Explicit Scheme (FTCS)
	Implicit Scheme (BTCS)
	Crank-Nicolson Scheme

	Python Implementation with Detailed Comments

	Finite Element Method: Theory and Implementation
	Mathematical Foundations
	Weak Formulation
	Galerkin Method

	Error Analysis for FEM

	Monte Carlo Methods
	Mathematical Theory
	Law of Large Numbers
	Central Limit Theorem
	Error Scaling

	Variance Reduction Techniques
	Importance Sampling
	Antithetic Variates

	Markov Chain Monte Carlo
	Metropolis-Hastings Algorithm

	Quantum Mechanics Applications
	Time-Independent Schrödinger Equation
	Finite Difference Discretization

	Harmonic Oscillator Solution

	Boundary Conditions Implementation
	Types of Boundary Conditions
	Dirichlet Boundary Conditions
	Neumann Boundary Conditions
	Robin Boundary Conditions

	Performance Optimization Techniques
	Algorithmic Optimizations
	Vectorization
	Sparse Matrix Formats

	Parallel Computing
	Multiprocessing
	GPU Acceleration with CuPy

	Benchmark Dataset Description
	Dataset Structure
	Directory Structure

	Data Formats
	NumPy Arrays (.npy)
	JSON Configuration Files

	Dataset Generation Script

	Conclusion and Future Directions
	Summary of Key Results
	Practical Recommendations
	Method Selection Guidelines
	Implementation Best Practices

	Future Research Directions
	Machine Learning Integration
	Quantum Computing
	High-Performance Computing

	Installation and Setup Instructions
	Python Environment Setup
	Testing the Installation

	Glossary of Terms

